
p 0

Этапы формирования и развития представлений о клетке

> Зарождение понятий о клетке

- 1590г. Братья Янсены (изобретение микроскопа),
- 1665г. Р. Гук (ввел термин «клетка»),
- 1680г. А.Левенгук (открыл одноклеточные организмы),
- 1831г. Р.Броун (открытие ядра).

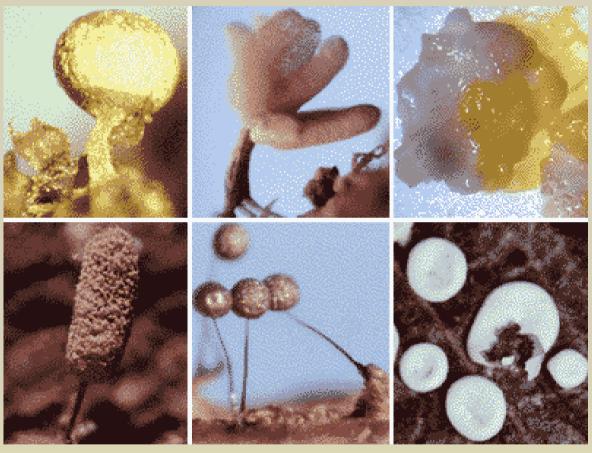
Этапы формирования и развития представлений о клетке

> Возникновение клеточной теории.

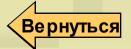
- 1838г. Т.Шлейден (сформулировал вывод: ткани растений состоят из клеток),
- 1839г. М.Шванн (ткани животных состоят из клеток. Обобщил знания о клетке, сформулировал основное положение клеточной теории: клетки представляют собой структурную и функциональную основу всех живых существ).

Этапы формирования и развития представлений о клетке

- > Развитие клеточной теории.
 - 1858г. Р.Вирхов. (утверждал, что каждая новая клетка происходит только от клетки в результате ее деления),
 - 1930г. создание электронного микроскопа.

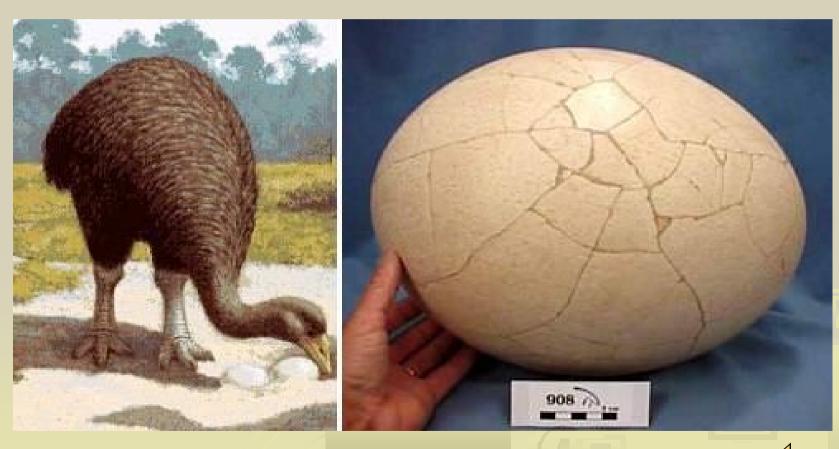

Клеточная теория

- клетка основная единица строения и развития всех живых организмов;
- клетки всех организмов сходны по своему строению, химическому составу, основным проявлениям жизнедеятельности;
- каждая новая клетка образуется в результате деления исходной (материнской) клетки;
- в многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани. Из тканей состоят органы, которые тесно связаны между собой и подчинены системам регуляции.


Ткани

Практически все ткани многоклеточных организмов состоят из клеток. С другой стороны, слизевики состоят из неразделённой перегородками клеточной массы со множеством ядер. Сходным образом устроена и сердечная мышца животных. Ряд структур организма (раковины, жемчужины, минеральная основа костей) образованы не клетками, а продуктами их секреции.

Слизевики



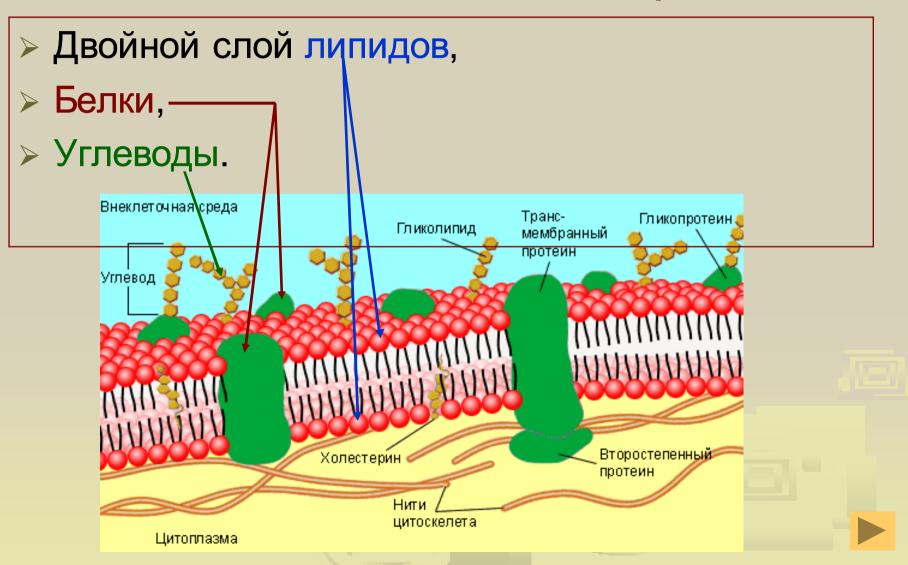

Слизевики состоят из неразделённой перегородками клеточной массы со множеством ядер.

> Мелкие организмы могут состоять всего лишь из сотен клеток. Организм человека включает в себя 1014 разновидностей клеток. Самая маленькая из известных сейчас клеток имеет размер 0,2 мкм, самая большая – неоплодотворенное яйцо эпиорниса – весит около 3,5 кг. Типичные размеры растительных и животных клеток составляют от 5 до 20 мкм. При этом между размерами организмов и размерами их клеток прямой зависимости обычно нет.

 Слева истреблённый несколько веков назад эпиорнис. Справа – его яйцо, найденное на Мадагаскаре.

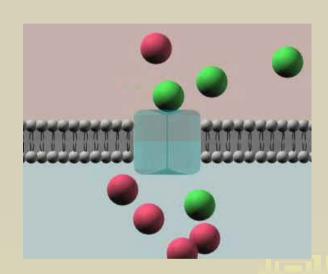
Клеточные структуры и их функции.

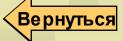
> Клетка:


- Ядро 🕒
- Цитоплазма 🕞
- Поверхностный аппарат ()
- Особенности растительных клеток

Поверхностный аппарат клеток

- Для того, чтобы поддерживать в себе необходимую концентрацию веществ, клетка должна быть физически отделена от своего окружения. Вместе с тем, жизнедеятельность организма предполагает интенсивный обмен веществ между клетками. Роль барьера между клетками играет поверхностный аппарат клеток, который состоит из:
 - 1. Плазматической мембраны;
 - 2. Надмембранного комплекса:

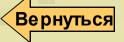

У животных – гликокаликс, У растений – клеточная стенка.


Состав и строение наружной плазматической мембраны

Основные функции поверхностного аппарата

- Ограничение внутренней среды клетки, сохранение ее формы,
- > Защита от повреждений,
- > Рецепторная функция;
- Транспорт веществ через плазматические мембраны
 - (<u>трансмембранный</u> <u>транспорт),</u>
 - Транспорт в мембранной упаковке (эндоцитоз и экзоцитоз).

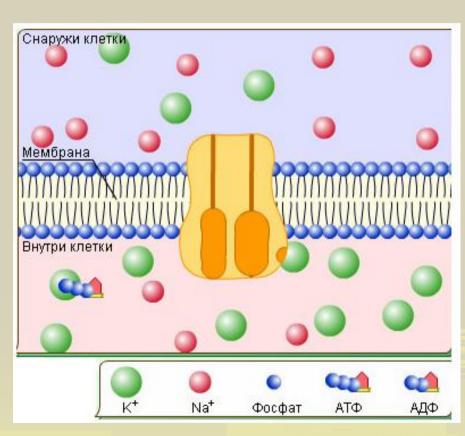
Транспорт веществ через плазматические мембраны


- Важной проблемой является транспорт веществ через плазматические мембраны. Он необходим для доставки питательных веществ в клетку, вывода токсичных отходов, создания градиентов для поддержания нервной и мышечной активности. Существуют следующие механизмы транспорта веществ через мембрану:
- > диффузия
- > OCMOC
- > активный транспорт

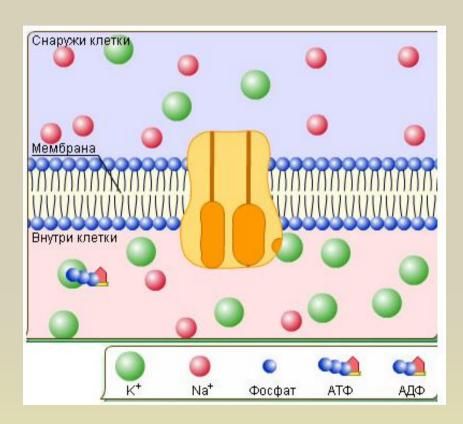
Диффузия, осмос

- диффузия обеспечивает перемещение маленьких, незаряженных молекул по градиенту концентрации между молекулами липидов (газы, жирорастворимые молекулы проникают прямо через плазматическую мембрану);
- при облегчённой диффузии растворимое в воде вещество (глюкоза, аминокислоты, нуклеотиды) проходит через мембрану по особому каналу, создаваемому белкомпереносчиком;
- осмос (диффузия воды через полупроницаемые мембраны);

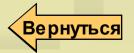
Процессы не требуют дополнительной энергии.


Активный транспорт

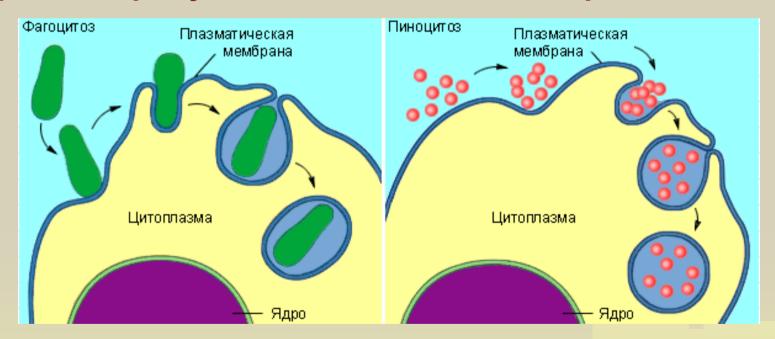
 активный транспорт - перенос молекул Na+ и K+, H+ из области с меньшей концентрацией в область с большей (против градиента концентраций) посредством специальных транспортных белков.

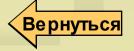

Процесс требует затраты энергии АТФ

Натрий-калиевый насос


> Обмен осуществляется при помощи специальных белков, образующих в мембране так называемые каналы. На рисунке показана работа такого канала (насоса), обеспечивающего движение ионов натрия и калия через клеточную мембрану.

Натрий-калиевый насос

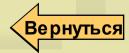

Внутриклеточная часть белка расщепляет молекулы АТФ. Это обеспечивает выведение из клетки трех ионов натрия и поступление двух ионов калия. Таким образом внутри клетки поддерживается высокая концентрация калия (в 35 раз выше, чем вне клетки) и низкая концентрация натрия (в 14 раз ниже внеклеточной). Это важно для создания электрических потенциалов на мембранах, процесса возбуждения в нервных и мышечных клетках, нормального протекания других внутриклеточных процессов.


Эндоцитоз

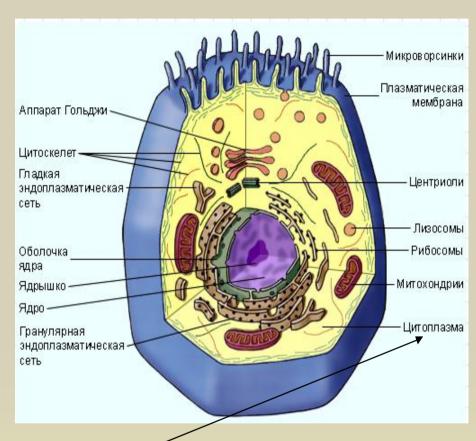
 при эндоцитозе мембрана образует впячивания, которые затем трансформируются в пузырьки или вакуоли.

! процесс требует дополнительной энергии

Различают <u>фагоцитоз</u> – поглощение твёрдых частиц (например, лейкоцитами крови) – и <u>пиноцитоз</u> – поглощение жидкостей;



Экзоцитоз


экзоцитоз – процесс, обратный эндоцитозу;
 из клеток выводятся непереварившиеся
 остатки твёрдых частиц и жидкий секрет.

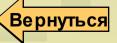
! процесс требует дополнительной энергии

Цитоплазма

Обязательная часть клетки, заключенная между плазматической мембраной и ядром.

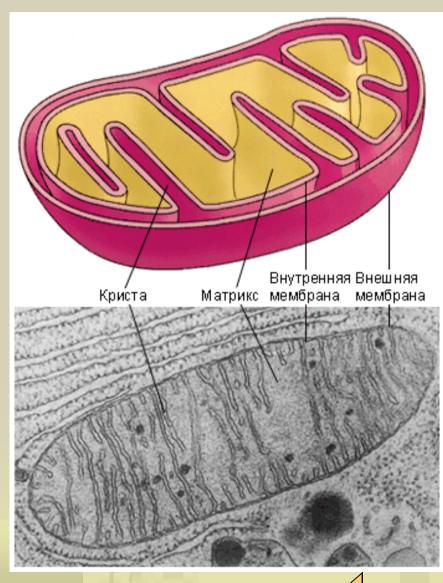
- 1. Основние вещество цитоплазмы гиалоплазма (существует в 2 формах: золь более жидкая и гель более густая.
- 2. Органеллы постоянные компоненты.
- 3. Включения –временные компоненты.

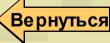
Свойство цитоплазмы – **циклоз** (постоянное движение)


Основные органеллы

> Мембранные

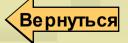
- Митохондрии
- Эндоплазматическая сеть
- Аппарат Гольджи
- Пластиды
- Лизосомы


> Немембранные

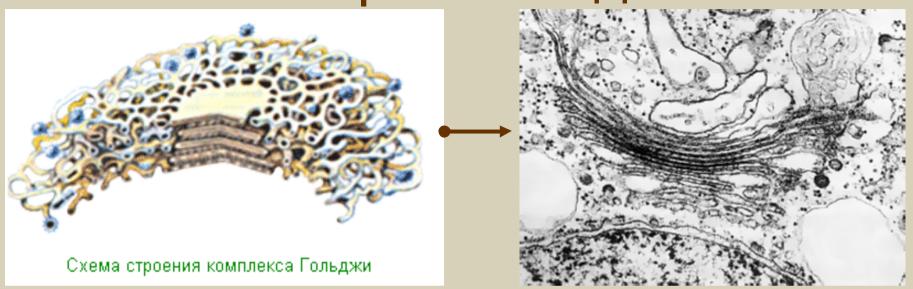

- Рибосомы
- Вакуоли
- Клеточный центр
- Органеллы движения

Митохондрии

- > Состав и строение:
 - 2 Мембраны
 - Наружная
 - Внутренняя (образует выросты кристы)
 - <u>Матрикс</u> (внутреннее полужидкое содержимое, включающее ДНК, РНК, белок и рибосомы)
- > Функции:
 - Синтез АТФ
 - Синтез собственных органических веществ,
 - Образование собственных рибосом.

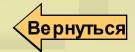

Эндоплазматическая сеть

- > Строение
 - 1 мембрана образует:
 - Полости
 - Канальцы
 - Трубочки
 - На поверхности мембран рибосомы



- > Функции:
 - Синтез органических веществ (с помощью рибосом)
 - Транспорт веществ

Аппарат Гольджи

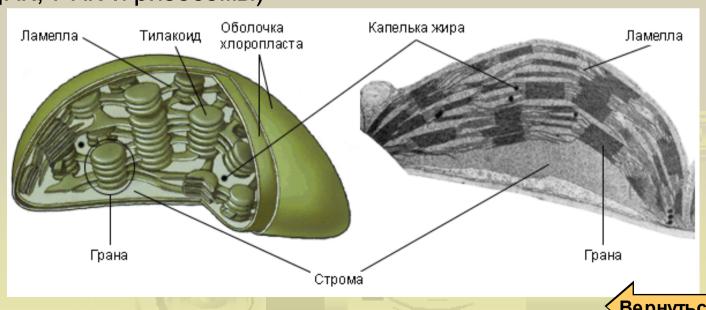


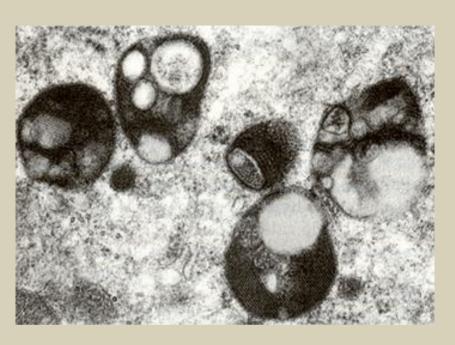
> Строение

• Окруженные мембранами полости (цистерны) и связанная с ними система пузырьков.

У Функции

- Накопление органических веществ
- «Упаковка» органических веществ
- Выведение органических веществ
- Образование лизосом

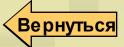



- > Строение
 - 2 мембраны
 - Наружная
 - Внутренняя (содержащие хлорофилл граны, собранные из стопки тилакоидных мембран)
 - **Матрикс** (внутренняя полужидкая среда, содержащая белки, ДНК, РНК и рибосомы)

Функции:

- •Синтез АТФ
- •Синтез углеводов
- •Биосинтез собственных белков

Лизосомы

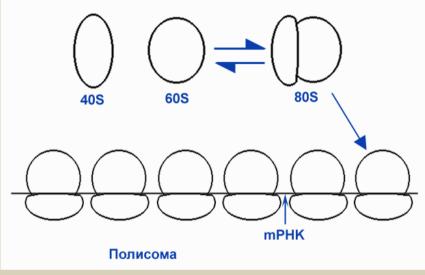


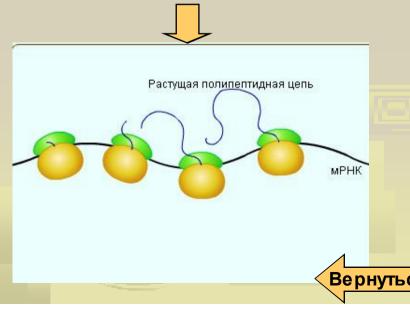
> Строение:

Пузырьки овальной формы (снаружи – мембрана, внутри – ферменты)

> Функции:

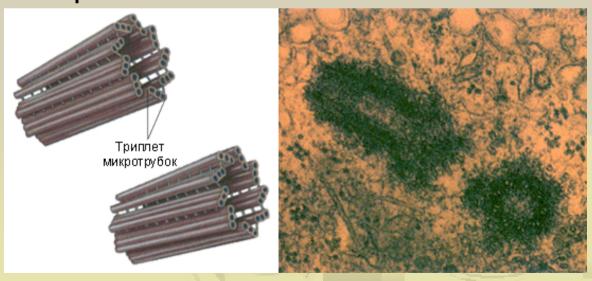
- Расщепление органических веществ,
- Разрушение отмерших органоидов клетки,
- Уничтожение отработавших клеток.

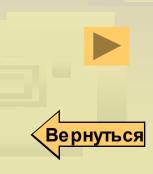



Немембранные органеллы. Рибосомы

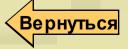
- > Строение:
 - Малая
 - Большая

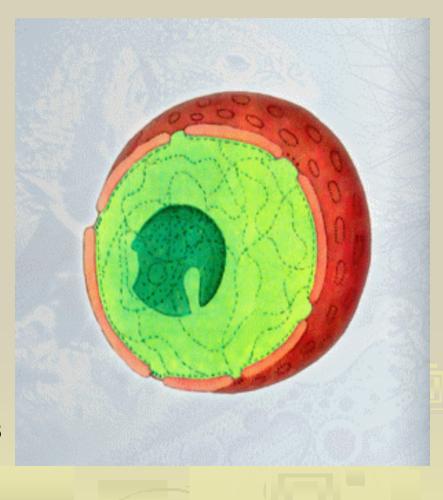
субъединицы


- > Состав:
 - РНК (рибосомная)
 - Белки.
- > Функции:
 - Обеспечивает биосинтез белка (сборку белковой молекулы из аминокислот).



Клеточный центр

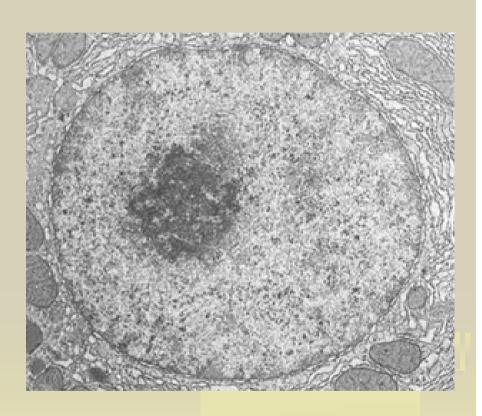

- > Строение:
 - 2 Центриоли (расположены перпендикулярно друг другу)
- > Состав центриолей:
 - Белковые микротрубочки.
- > Свойства: способны к удвоению
- > Функции:
 - Принимает участие в делении клеток животных и низших растений


Органеллы движения

- **Реснички** (многочисленные цитоплазматические выросты на мембране).
- **ЖГУТИКИ** (единичные цитоплазматические выросты на мембране).
- Псевдоподии (амебовидные выступы цитоплазмы).
- Миофибриллы (тонкие нити длиной до 1 см.).

Ядро

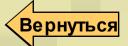
Ядро имеется в клетках всех эукариот за исключением эритроцитов млекопитающих. У некоторых простейших имеются два ядра, но как правило, клетка содержит только одно ядро. Ядро обычно принимает форму шара или яйца; по размерам (10-20 мкм) оно является самой крупной из органелл.



Ядро

> Строение:

- 1. Ядерная оболочка (2 мембранная):
 - Наружная мембрана
 - Внутренняя мембрана.
- 2. Ядерный сок (белки, ДНК, вода, мин. соли).
- 3. Ядрышко (белок и р-РНК).
- 4. Хромосомы (хроматин): ДНК

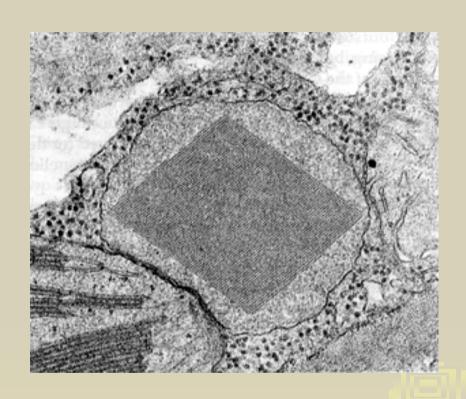

Белок.

Ядро

> Функции:

- Регуляция процесса обмена веществ,
- Хранение наследственной информации и ее воспроизводство,
- Синтез РНК,
- Сборка рибосом (рибосомальный белок
 - + рибосомальная РНК)

Пероксисома

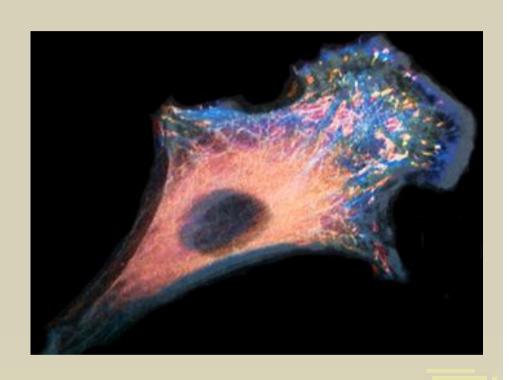

Пероксисомы

 (микротельца) имеют
 округлые очертания и
 окружены мембраной. Их
 размер не превышает
 1,5 мкм. Пероксисомы
 связаны с
 эндоплазматической сетью
 и содержат ряд важных
 ферментов, в частности,

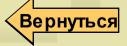
каталазу, участвующую в

разложении перекиси

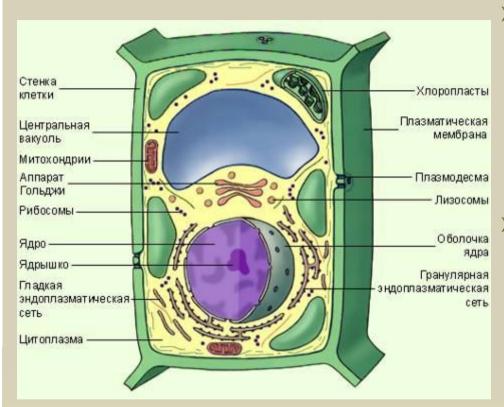
водорода.



Пероксисома клетки листа. В центре её кристаллическое белковое ядро.

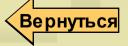


Цитоскелет, микрофиламенты


Микротрубочки представляют собой достаточно жёсткие структуры и поддерживают форму клетки, образуя своеобразный цитоскелет. С опорой и движением связана и ещё одна форма органелл микрофиламенты – тонкие белковые нити диаметром 5-7 нм.

Цитоскелет клетки. Микрофиламенты окрашены в синий, микротрубочки – в зеленый, промежуточные волокна – в красный цвет.

Особенности растительных клеток


- В растительных клетках присутствуют все органеллы, обнаруженные в животных клетках (за исключением центриолей). Однако имеются в них и свойственные только для растений структуры.
- Клеточные стенки растений состоят из целлюлозы, образующей микрофибриллы. В клетках древовидных растений слои целлюлозы пропитываются лигнином, придающим им дополнительную жёсткость.

Вернуться

- ▶Клеточные стенки служат растениям опорой, предохраняют клетки от разрыва, определяют форму клетки, играют важную роль в транспорте воды и питательных веществ от клетки к клетке.
- >Соседние клетки связаны друг с другом *плазмодесмами*, проходящими через мелкие поры клеточных стенок.

Вакуоли

Вакуоль – наполненный жидкостью мембранный мешочек. В животных клетках могут наблюдаться небольшие вакуоли, выполняющие фагоцитарную, пищеварительную, сократительную и другие функции. Растительные клетки имеют одну большую центральную вакуоль. Жидкость, заполняющая её, называется клеточным соком. Это концентрированный раствор сахаров, минеральных солей, органических кислот, пигментов и других веществ. Вакуоли накапливают воду, могут содержать красящие пигменты, защитные вещества (например, таннины), гидролитические ферменты, вызывающие автолиз клетки, отходы жизнедеятельности, запасные питательные вещества.

